Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Blood Adv ; 8(9): 2290-2299, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38447116

ABSTRACT

ABSTRACT: Patients treated with antineoplastic therapy often develop thrombocytopenia requiring platelet transfusion, which has potential to exacerbate pulmonary injury. This study tested the hypothesis that amotosalen-UVA pathogen-reduced platelet components (PRPCs) do not potentiate pulmonary dysfunction compared with conventional platelet components (CPCs). A prospective, multicenter, open-label, sequential cohort study evaluated the incidence of treatment-emergent assisted mechanical ventilation initiated for pulmonary dysfunction (TEAMV-PD). The first cohort received CPC. After the CPC cohort, each site enrolled a second cohort transfused with PRPC. Other outcomes included clinically significant pulmonary adverse events (CSPAE) and the incidence of treatment-emergent acute respiratory distress syndrome (TEARDS) diagnosed by blinded expert adjudication. The incidence of TEAMV-PD in all patients (1068 PRPC and 1223 CPC) was less for PRPC (1.7 %) than CPC (3.1%) with a treatment difference of -1.5% (95% confidence interval [CI], -2.7 to -0.2). In patients requiring ≥2 PCs, the incidence of TEAMV-PD was reduced for PRPC recipients compared with CPC recipients (treatment difference, -2.4%; 95% CI, -4.2 to -0.6). CSPAE increased with increasing PC exposure but were not significantly different between the cohorts. For patients receiving ≥2 platelet transfusions, TEARDS occurred in 1.3% PRPC and 2.6% CPC recipients (P = .086). Bayesian analysis demonstrated PRPC may be superior in reducing TEAMV-PD and TEARDS for platelet transfusion recipients compared with CPC recipients, with 99.2% and 88.8% probability, respectively. In this study, PRPC compared with CPC demonstrated high probability of reduced severe pulmonary injury requiring assisted mechanical ventilation in patients with hematology disorders dependent on platelet transfusion. This trial was registered at www.ClinicalTrials.gov as #NCT02549222.


Subject(s)
Platelet Transfusion , Humans , Platelet Transfusion/adverse effects , Female , Middle Aged , Male , Aged , Acute Lung Injury/etiology , Blood Platelets , Prospective Studies , Adult , Thrombocytopenia/etiology , Hematologic Diseases/therapy
2.
Transfus Med Rev ; 37(4): 150769, 2023 10.
Article in English | MEDLINE | ID: mdl-37919210

ABSTRACT

The tragedy of transfusion-associated hepatitis and HIV spurred a decades-long overhaul of the regulatory oversight and practice of blood transfusion. Consequent to improved donor selection, testing, process control, clinical transfusion practice and post-transfusion surveillance, transfusion in the United States and other high-income countries is now a very safe medical procedure. Nonetheless, pathogens continue to emerge and threaten the blood supply, highlighting the need for a proactive approach to blood transfusion safety. Blood donor populations and the global transfusion infrastructure are under-utilized resources for the study of infectious diseases. Blood donors are large, demographically diverse subsets of general populations for whom cross-sectional and longitudinal samples are readily accessible for serological and molecular testing. Blood donor collection networks span diverse geographies, including in low- and middle-income countries, where agents, especially zoonotic pathogens, are able to emerge and spread, given limited tools for recognition, surveillance and control. Routine laboratory storage and transportation, coupled with data capture, afford access to rich epidemiological data to assess the epidemiology and pathogenesis of established and emerging infections. Subsequent to the State of the Science in Transfusion Medicine symposium in 2022, our working group (WG), "Emerging Infections: Impact on Blood Science, the Blood Supply, Blood Safety, and Public Health" elected to focus on "leveraging donor populations to study the epidemiology and pathogenesis of transfusion-transmitted and emerging infectious diseases." The 5 landmark studies span (1) the implication of hepatitis C virus in post-transfusion hepatitis, (2) longitudinal evaluation of plasma donors with incident infections, thus informing the development of a widely used staging system for acute HIV infection, (3) explication of the dynamics of early West Nile Virus infection, (4) the deployment of combined molecular and serological donor screening for Babesia microti, to characterize its epidemiology and infectivity and facilitate routine donor screening, and (5) national serosurveillance for SARS-CoV-2 during the COVID-19 pandemic. The studies highlight the interplay between infectious diseases and transfusion medicine, including the imperative to ensure blood transfusion safety and the broader application of blood donor populations to the study of infectious diseases.


Subject(s)
Communicable Diseases, Emerging , Communicable Diseases , HIV Infections , Hepatitis C , Transfusion Reaction , Humans , United States/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , HIV Infections/epidemiology , Transfusion Reaction/epidemiology , Cross-Sectional Studies , Pandemics , Blood Transfusion , Communicable Diseases/epidemiology , Hepatitis C/epidemiology , Blood Donors
3.
Transfusion ; 63(9): 1633-1638, 2023 09.
Article in English | MEDLINE | ID: mdl-37615329

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected patients exhibit disease ranging from asymptomatic to severe pneumonia, multi-organ failure, and death. convalescent COVID plasma (CCP) from recovered patients with high levels of neutralizing antibodies has demonstrated therapeutic efficacy to reduce the morbidity of coronavirus disease 2019 (COVID-19) in some studies. The development of assays to characterize the activity of CCP to neutralize SARS-CoV-2 infectivity offers the possibility to improve potential therapeutic efficacy. Lyophilization of CCP may increase the availability of this therapy. We hypothesized that SARS-CoV-2 antibody profiles of pooled lyophilized pathogen-reduced CCP from COVID-19-recovered blood donors retains virus-neutralizing efficacy as reported for frozen pathogen-reduced CCP. METHODS: Pooled lyophilized pathogen-reduced plasma was prepared from recovered COVID plasma donors. Antibodies to SARS-CoV-2 were characterized in each donor plasma prior to pathogen reduction and lyophilization and after lyophilization of individual CCP, and in the lyophilized CCP pool. Several complimentary assays were used to characterize antibody levels, neutralizing capacity, and the spectrum of antigen reactivity. The mean values for individual plasma samples and the value in the pool were compared. RESULTS: The mean ratio for antibody binding to SARS-CoV-2 antigens before and after treatment was 0.95 ± 0.22 mean fluorescent intensity (MFI) units. Antibody activity to an array of influenza virus antigens demonstrated a mean activity ratio of 0.92 ± 0.12 MFI before and after treatment. CONCLUSIONS: The antibody activity in pooled pathogen-reduced lyophilized CCPs demonstrated minimal impact due to pathogen reduction treatment and lyophilization.


Subject(s)
COVID-19 , Furocoumarins , Humans , SARS-CoV-2 , COVID-19/therapy , Antibodies, Neutralizing
4.
Nat Commun ; 13(1): 4212, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864104

ABSTRACT

An easily implementable serological assay to accurately detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies is urgently needed to better track herd immunity, vaccine efficacy and vaccination rates. Herein, we report the Split-Oligonucleotide Neighboring Inhibition Assay (SONIA) which uses real-time qPCR to measure the ability of neutralizing antibodies to block binding between DNA-barcoded viral spike protein subunit 1 and the human angiotensin-converting enzyme 2 receptor protein. The SONIA neutralizing antibody assay using finger-prick dried blood spots displays 91-97% sensitivity and 100% specificity in comparison to the live-virus neutralization assays using matched serum specimens for multiple SARS-CoV-2 variants-of-concern. The multiplex version of this neutralizing antibody assay, using easily collectable finger-prick dried blood spots, can be a valuable tool to help reveal the impact of age, pre-existing health conditions, waning immunity, different vaccination schemes and the emergence of new variants-of-concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , Polymerase Chain Reaction , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
5.
Transfusion ; 62(7): 1365-1376, 2022 07.
Article in English | MEDLINE | ID: mdl-35748490

ABSTRACT

BACKGROUND: Platelet transfusion carries risk of transfusion-transmitted infection (TTI). Pathogen reduction of platelet components (PRPC) is designed to reduce TTI. Pulmonary adverse events (AEs), including transfusion-related acute lung injury and acute respiratory distress syndrome (ARDS) occur with platelet transfusion. STUDY DESIGN: An open label, sequential cohort study of transfusion-dependent hematology-oncology patients was conducted to compare pulmonary safety of PRPC with conventional PC (CPC). The primary outcome was the incidence of treatment-emergent assisted mechanical ventilation (TEAMV) by non-inferiority. Secondary outcomes included: time to TEAMV, ARDS, pulmonary AEs, peri-transfusion AE, hemorrhagic AE, transfusion reactions (TRs), PC and red blood cell (RBC) use, and mortality. RESULTS: By modified intent-to-treat (mITT), 1068 patients received 5277 PRPC and 1223 patients received 5487 CPC. The cohorts had similar demographics, primary disease, and primary therapy. PRPC were non-inferior to CPC for TEAMV (treatment difference -1.7%, 95% CI: (-3.3% to -0.1%); odds ratio = 0.53, 95% CI: (0.30, 0.94). The cumulative incidence of TEAMV for PRPC (2.9%) was significantly less than CPC (4.6%, p = .039). The incidence of ARDS was less, but not significantly different, for PRPC (1.0% vs. 1.8%, p = .151; odds ratio = 0.57, 95% CI: (0.27, 1.18). AE, pulmonary AE, and mortality were not different between cohorts. TRs were similar for PRPC and CPC (8.3% vs. 9.7%, p = .256); and allergic TR were significantly less with PRPC (p = .006). PC and RBC use were not increased with PRPC. DISCUSSION: PRPC demonstrated reduced TEAMV with no excess treatment-related pulmonary morbidity.


Subject(s)
Respiratory Distress Syndrome , Transfusion Reaction , Blood Platelets , Blood Transfusion , Cohort Studies , Humans , Photosensitizing Agents , Platelet Transfusion/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Transfusion Reaction/epidemiology , Transfusion Reaction/etiology
6.
Transfusion ; 62(3): 570-583, 2022 03.
Article in English | MEDLINE | ID: mdl-35128658

ABSTRACT

BACKGROUND: COVID-19 convalescent plasma (CCP), from donors recovered from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the limited therapeutic options currently available for the treatment of critically ill patients with COVID-19. There is growing evidence that CCP may reduce viral loads and disease severity; and reduce mortality. However, concerns about the risk of transfusion-transmitted infections (TTI) and other complications associated with transfusion of plasma, remain. Amotosalen/UVA pathogen reduction treatment (A/UVA-PRT) of plasma offers a mitigation of TTI risk, and when combined with pooling has the potential to increase the diversity of the polyclonal SARS-CoV-2 neutralizing antibodies. STUDY DESIGN AND METHODS: This study assessed the impact of A/UVA-PRT on SARS-CoV-2 antibodies in 42 CCP using multiple complimentary assays including antigen binding, neutralizing, and epitope microarrays. Other mediators of CCP efficacy were also assessed. RESULTS: A/UVA-PRT did not negatively impact antibodies to SARS-CoV-2 and other viral epitopes, had no impact on neutralizing activity or other potential mediators of CCP efficacy. Finally, immune cross-reactivity with other coronavirus antigens was observed raising the potential for neutralizing activity against other emergent coronaviruses. CONCLUSION: The findings of this study support the selection of effective CCP combined with the use of A/UVA-PRT in the production of CCP for patients with COVID-19.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Furocoumarins , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
7.
Nat Commun ; 12(1): 6, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397903

ABSTRACT

The current practice for diagnosis of COVID-19, based on SARS-CoV-2 PCR testing of pharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk, likely underestimates the true prevalence of infection. Serologic methods can more accurately estimate the disease burden by detecting infections missed by the limited testing performed to date. Here, we describe the validation of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A comparison of antibody profiles detected on the array from control sera collected prior to the SARS-CoV-2 pandemic versus convalescent blood specimens from virologically confirmed COVID-19 cases demonstrates near complete discrimination of these two groups, with improved performance from use of antigen combinations that include both spike protein and nucleoprotein. This array can be used as a diagnostic tool, as an epidemiologic tool to more accurately estimate the disease burden of COVID-19, and as a research tool to correlate antibody responses with clinical outcomes.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Microarray Analysis/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology
8.
medRxiv ; 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32577696

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to more than 4 million confirmed infections worldwide and over 300,000 deaths. While Remdesivir has recently received FDA emergency use authorization for treatment of SARS-CoV-2 infection, convalescent plasma (CP) with high titers of SARS-CoV-2 neutralizing antibodies (NAbs) from recovered donors remains a promising and widely accessible method to mitigate severe disease symptoms. Here, we describe the development and validation of a cell-free neutralization PCR assay using SARS-CoV-2 spike protein S1 and human ACE2 receptor-DNA conjugates. By comparing with samples collected prior to the outbreak, we confirmed that NAbs were specifically detected in COVID-19 cases. Using our unique assay, the NAb signals are detectable as early as 10 days after onset of symptoms and continue to rise, plateauing after 18 days. Notably, we showed that the use of licensed pathogen reduction technology to inactivate potentially contaminating infectious pathogens in CP did not alter NAb signals, paving a path to safely administer effective CP therapies. The described neutralization PCR assay can serve as a qualification tool to easily identify suitable CP donors of a potentially lifesaving therapy. In addition, this assay tool is readily deployable in standard laboratories with biosafety level 2 capability, and can yield results within 2-3 hr. This advancement can facilitate research on factors driving diverse COVID-19 disease manifestations, and to evaluate the impact of various CP processing protocols on CP therapeutic efficacy.

9.
bioRxiv ; 2020 May 08.
Article in English | MEDLINE | ID: mdl-32511302

ABSTRACT

The current practice for diagnosis of COVID-19, based on SARS-CoV-2 PCR testing of pharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk, likely underestimates the true prevalence of infection. Serologic methods can more accurately estimate the disease burden by detecting infections missed by the limited testing performed to date. Here, we describe the validation of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A comparison of antibody profiles detected on the array from control sera collected prior to the SARS-CoV-2 pandemic versus convalescent blood specimens from virologically confirmed COVID-19 cases demonstrates near complete discrimination of these two groups, with improved performance from use of antigen combinations that include both spike protein and nucleoprotein. This array can be used as a diagnostic tool, as an epidemiologic tool to more accurately estimate the disease burden of COVID-19, and as a research tool to correlate antibody responses with clinical outcomes.

10.
Transfusion ; 58(6): 1506-1515, 2018 06.
Article in English | MEDLINE | ID: mdl-29607502

ABSTRACT

INTRODUCTION: Transfusion-associated graft-versus-host disease (TA-GVHD) is a rare complication after transfusion of components containing viable donor T cells. Gamma irradiation with doses that stop T-cell proliferation is the predominant method to prevent TA-GVHD. Treatment with pathogen inactivation methodologies has been found to also be effective against proliferating white blood cells, including T cells. In this study, T-cell inactivation was compared, between amotosalen/ultraviolet A (UVA) treatment and gamma-irradiation (2500 cGy), using a sensitive limiting dilution assay (LDA) with an enhanced dynamic range. METHODS AND MATERIALS: Matched plasma units (N = 8), contaminated with 1 × 106 peripheral blood mononuclear cells (PBMCs) per mL, were either treated with amotosalen/UVA or gamma irradiation, or retained as untreated control. Posttreatment, cells were cultured under standardized conditions. T-cell proliferation was determined by the incorporation of 3 H-thymidine and correlated with microscopic detection. RESULTS: Range-finding experiments showed that after gamma irradiation (2500 cGy), significant T-cell proliferation could be observed at a 1 × 107 cell culture density, some proliferation at 1 × 106 , and none at 1 × 105 cells/well. Based on these facts, a quantitative comparison was carried out between amotosalen/UVA at the highest challenge of 1 × 107 PBMCs/well, and gamma irradiation at 1 × 106 and 1 × 105 PBMCs/well. Complete inactivation of the T cells after amotosalen/UVA treatment was observed, equivalent to greater than 6.2 log inactivation. Complete inactivation of the T cells was also observed after gamma irradiation when 1 × 105 PBMCs/well were cultured (>4.2 log inactivation). Proliferation was observed when 1 × 106 PBMCs/well were cultured (≤5.2 log inactivation) after gamma irradiation. CONCLUSION: Amotosalen/UVA treatment more effectively inactivates T cells than the current standard of gamma irradiation (2500 cGy) for the prevention of TA-GVHD.


Subject(s)
Gamma Rays , Graft vs Host Disease/prevention & control , T-Lymphocytes/radiation effects , Transfusion Reaction/prevention & control , Ultraviolet Rays , Blood Transfusion , Cell Proliferation/radiation effects , Furocoumarins/pharmacology , Furocoumarins/therapeutic use , Humans , Lymphocyte Activation/drug effects , Lymphocyte Activation/radiation effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Treatment Outcome
11.
Transfusion ; 58(4): 905-916, 2018 04.
Article in English | MEDLINE | ID: mdl-29498049

ABSTRACT

BACKGROUND: Nucleic acid-targeted pathogen inactivation technology using amustaline (S-303) and glutathione (GSH) was developed to reduce the risk of transfusion-transmitted infectious disease and transfusion-associated graft-versus-host disease with red blood cell (RBC) transfusion. STUDY DESIGN AND METHODS: A randomized, double-blind, controlled study was performed to assess the in vitro characteristics of amustaline-treated RBCs (test) compared with conventional (control) RBCs and to evaluate safety and efficacy of transfusion during and after cardiac surgery. The primary device efficacy endpoint was the postproduction hemoglobin (Hb) content of RBCs. Exploratory clinical outcomes included renal and hepatic failure, the 6-minute walk test (a surrogate for cardiopulmonary function), adverse events (AEs), and the immune response to amustaline-treated RBCs. RESULTS: A total of 774 RBC unis were produced. Mean treatment difference in Hb content was -2.27 g/unit (95% confidence interval, -2.61 to -1.92 g/unit), within the prespecified equivalence margins (±5 g/unit) to declare noninferiority. Amustaline-treated RBCs met European guidelines for Hb content, hematocrit, and hemolysis. Fifty-one (25 test and 26 control) patients received study RBCs. There were no significant differences in RBC usage or other clinical outcomes. Observed AEs were within the spectrum expected for patients of similar age undergoing cardiovascular surgery requiring RBCs transfusion. No patients exhibited an immune response specific to amustaline-treated RBCs. CONCLUSION: Amustaline-treated RBCs demonstrated equivalence to control RBCs for Hb content, have appropriate characteristics for transfusion, and were well tolerated when transfused in support of acute anemia. Renal impairment was characterized as a potential efficacy endpoint for pivotal studies of RBC transfusion in cardiac surgery.


Subject(s)
Acridines/pharmacology , Bacteremia/prevention & control , Blood Safety/methods , Blood-Borne Pathogens , Cardiac Surgical Procedures , Erythrocyte Transfusion , Erythrocytes/drug effects , Nitrogen Mustard Compounds/pharmacology , Viremia/prevention & control , Acute Kidney Injury/etiology , Aged , Aged, 80 and over , Bacteremia/transmission , Blood-Borne Pathogens/drug effects , Double-Blind Method , Erythrocyte Transfusion/adverse effects , Female , Glutathione/pharmacology , Graft vs Host Disease/prevention & control , Heart Function Tests , Hemoglobins/analysis , Humans , Liver Failure/etiology , Male , Postoperative Complications/etiology , Transfusion Reaction/prevention & control , Viremia/transmission , Virus Inactivation
12.
Transfusion ; 57(12): 2946-2957, 2017 12.
Article in English | MEDLINE | ID: mdl-28840603

ABSTRACT

BACKGROUND: Delayed, large-volume bacterial culture and amotosalen/ultraviolet-A light pathogen reduction are effective at reducing the risk of bacterial proliferation in platelet concentrates (PCs). Hemovigilance programs continue to receive reports of suspected septic transfusion reactions, most with low imputability. Here, we compile national hemovigilance data to determine the relative efficacy of these interventions. STUDY DESIGN AND METHODS: Annual reports from the United Kingdom, France, Switzerland, and Belgium were reviewed between 2005 and 2016 to assess the risk of bacterial contamination and septic reactions. RESULTS: Approximately 1.65 million delayed, large-volume bacterial culture-screened PCs in the United Kingdom and 2.3 million amotosalen/ultraviolet-A-treated PCs worldwide were issued with no reported septic fatalities. One definite, one possible, and 12 undetermined/indeterminate septic reactions and eight contaminated "near misses" were reported with delayed, large-volume bacterial cultures between 2011 and 2016, for a lower false-negative culture rate than that in the previous 5 years (5.4 vs. 16.3 per million: odds ratio, 3.0; 95% confidence interval, 1.4-6.5). Together, the Belgian, Swiss, and French hemovigilance programs documented zero probable or definite/certain septic reactions with 609,290 amotosalen/ultraviolet-A-treated PCs (<1.6 per million). The rates were significantly lower than those reported with concurrently transfused, nonpathogen-reduced PCs in Belgium (<4.4 vs. 35.6 per million: odds ratio, 8.1; 95% confidence interval,1.1-353.3) and with historic septic reaction rates in Switzerland (<6.0 vs. 82.9 per million: odds ratio, 13.9; 95% confidence interval, 2.1-589.2), and the rates tended to be lower than those from concurrently transfused, nonpathogen-reduced PCs in France (<4.7 vs. 19.0 per million: odds ratio, 4.1; 95% confidence interval, 0.7-164.3). CONCLUSION: Pathogen reduction and bacterial culture both reduced the incidence of septic reactions, although under-reporting and strict imputability criteria resulted in an underestimation of risk.


Subject(s)
Blood Platelets/microbiology , Blood Safety/methods , Transfusion Reaction/prevention & control , Bacterial Infections/prevention & control , Bacterial Infections/transmission , Bacteriological Techniques/methods , Disinfection/methods , Europe , Furocoumarins , Humans , Photosensitizing Agents , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...